Anna Fiedorowicz

RAMSEY-TYPE THEOREMS RELATED TO Q-colourings of Graphs

Suppose \mathcal{Q} is a hereditary graph property and assume $\mathcal{Q} \subseteq \mathcal{O}^2$, where \mathcal{O}^2 denotes the class of bipartite graphs. We define a (\mathcal{Q}, k) -colouring of a graph G as a mapping $f: V(G) \to C$, where $C = \{1, \ldots, k\}$ is a set of colours, satisfying the condition that for every two distinct colours i and j, the subgraph induced in G by all the edges linking a vertex coloured with i and a vertex coloured with j belongs to \mathcal{Q} . If we additionally assume that for every colour i the set of vertices coloured with i is independent, then these (\mathcal{Q}, k) -colourings are a natural generalization of acyclic colourings if \mathcal{Q} is the class of acyclic graphs, star colourings if \mathcal{Q} is the class of star-forests, and so on.

Let \mathcal{P} be a graph property and assume $k \geq 2$. We say that \mathcal{P} is a (\mathcal{Q}, k) -Ramsey class, if for every $G \in \mathcal{P}$ there exists $H \in \mathcal{P}$ such that for every (\mathcal{Q}, k) -colouring of H there is a colour i such that $G \subseteq H[V_i]$, where V_i is the set of vertices coloured with i.

The notion of $(\mathcal{Q}, 2)$ -Ramsey classes of graphs was introduced in [1], as a generalization of vertex-Ramsey classes of graphs, see [2] for a survey.

We prove that some well-known and important graph properties, such as k-degenerate graphs, k-trees and chordal graphs, are (\mathcal{Q}, k) -Ramsey classes of graphs. We also present sufficient conditions for a graph property to be a (\mathcal{Q}, k) -Ramsey class.

This is joint work with Mieczysław Borowiecki.

References

- M. Borowiecki, A. Fiedorowicz, On Partitions of Hereditary Properties of Graphs, Discuss. Math. Graph Theory 26 (2006), 377–387.
- [2] J. Nešetřil, Ramsey Theory, in: R.L. Graham, M. Grötschel, L. Lovász, eds., Handbook of Combinatorics, (North-Holland, 1995) 1331–1403.