Irmantas Radavičius

On Existence of Hamilton Cycles in Uniform Random Intersection Graphs

We give a sufficient condition for the hamiltonicity of the uniform random intersection graph $G_{n, m, d}$. It is a graph on n vertices, where each vertex is assigned d keys drawn independently at random from a given set of m keys, and where any two vertices establish an edge whenever they share at least one common key. We show that with probability tending to 1 the graph $G_{n, m, d}$ has a Hamilton cycle provided that $n=2^{-1} m(\ln m+\ln \ln m+\omega(m))$ with some $\omega(m) \rightarrow+\infty$ as $m \rightarrow \infty$.

