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Local Exponents of Primitive Digraphs

A digraph D is primitive if there exists an integer t > 0 such that for
all ordered pairs of vertices u and v (not necessarily distinct) there is a
directed walk from u to v of length t in D. The smallest such t is called
the exponent of D, denoted exp(D). If D is primitive and u ∈ V (D),
then there exists an integer t > 0 such that for each v ∈ V (D) there
exists a directed walk from u do v in D of length t. The smallest
such t, denoted expD (u), is called the exponent of the vertex u in
D (or the local exponent of D at the vertex u). Then exp (D) =
maxu∈V (D) {expD (u)}.

If D is a primitive digraph and |V (D)| = n, then the vertices can
be relabeled as v1, v2, . . . , vn so that expD(v1) ≤ . . . ≤ expD(vn). Let
ε (D) = expD(vn) − expD(v1). The problem of characterizing the sets
Lo

n,m (k) = {exp (D) : D ∈ DPo (n, m) ∧ ε (D) = k}, where DPo (n, m)
is the class of primitive digraphs with n vertices containing loops ex-
actly at m vertices, is considered.
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