Katarzyna Rybarczyk

A New Method for Establishing Sharp Threshold Functions in Random Intersection Graphs

In a random intersection graph $G(n, m, p)$ to each vertex v from a vertex set V we assign a set of its features D_v by choosing independently each feature with probability p from a feature set W. Then we connect vertices $v, v' \in V$ by an edge if and only if sets D_v and $D_{v'}$ intersect. In the talk a new method for establishing threshold functions in $G(n, m, p)$ will be presented. It will be used to determine sharp threshold functions in $G(n, m, p)$ for k–connectivity, perfect matching containment and Hamilton cycle containment. In fact it will be shown that in some cases it is possible to obtain interesting results using relations between $G(n, m, p)$ and random graph with independent edges, despite the fact that two models differ by a lot.